Tunable Schottky Barrier in Photovoltaic BiFeO3 Based Ferroelectric Composite Thin Films

نویسندگان

  • Seyed Mohammad Hosein Khalkhali aDepartment of Physics, University of Kharazmi
  • Seyedeh Mehri Hamidi Laser and Plasma Research Institute, G.C., Shahid Beheshti University
چکیده مقاله:

We examine the photo-assisted polarization loop in a BiFeO3 thin film under UV light illumination. BiFeO3 thin film prepared by pulsed laser deposition method onto the BaTiO3 thin film and the polarization behavior has been measured under poling voltage. Our results show the engineered polarization due to controllable schottky barrier under inverse poling voltage. This control on schottky barrier height and then polarization of thin film can be opened the new insight in the ferroelectric devices.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between Ferroelectric Polarization and Defects in BiFeO3 Thin Films

Nanoscale impurity defects, with structures different from host materials, are known to commonly exist in functional complex oxides as a result of slight stoichiometry fluctuations that occur during material growth. Local perturbations induced by these defects, such as charge, strain, and atomic interaction, could have a profound effect on the physical properties of oxide nanomaterials. A direc...

متن کامل

Ferroelectric Thin Films for Tunable Microwave Applications

Modern wireless communication systems are based on microwave technologies. Ferroelectric devices with the electric field dependent dielectric properties and low dielectric losses at microwave frequencies are very promising. Capacitance tunability nc, defined as the ratio of the capacitance at zero applied bias voltage to the capacitance at some desired applied voltage, is the key functional pro...

متن کامل

Ferroelectric domain structures of epitaxial „001... BiFeO3 thin films

Ferroelectric domain structures of epitaxial BiFeO3 thin films on miscut 001 SrTiO3 substrates have been studied by transmission electron microscopy. BiFeO3 on 0.8° miscut substrates are composed of both 109° and 71° domains; in contrast, only 71° stripe domains are observed in BiFeO3 on 4° miscut 001 SrTiO3 substrates. The domain width in BiFeO3 on 4° miscut substrates increases as film thickn...

متن کامل

Characterization and Photovoltaic Properties of BiFeO3 Thin Films

Bismuth ferrite (BiFeO3) thin films were prepared by a spin-coating method. Crystal structure and optical properties of the BiFeO3 films were evaluated using X-ray diffraction. The lattice constants, crystallite size, and energy gap of BiFeO3 films depended on the concentration of the BiFeO3 precursor solution. BiFeO3/CH3NH3PbI3 photovoltaic devices were fabricated to investigate photovoltaic p...

متن کامل

Switchable ferroelectric diode and photovoltaic effect in BiFeO3.

Unidirectional electric current flow, such as that found in a diode, is essential for modern electronics. It usually occurs at asymmetric interfaces such as p-n junctions or metal/semiconductor interfaces with Schottky barriers. We report on a diode effect associated with the direction of bulk electric polarization in BiFeO3: a ferroelectric with a small optical gap edge of approximately 2.2 el...

متن کامل

Giant optical enhancement of strain gradient in ferroelectric BiFeO3 thin films and its physical origin.

Through mapping of the spatiotemporal strain profile in ferroelectric BiFeO3 epitaxial thin films, we report an optically initiated dynamic enhancement of the strain gradient of 10(5)-10(6) m(-1) that lasts up to a few ns depending on the film thickness. Correlating with transient optical absorption measurements, the enhancement of the strain gradient is attributed to a piezoelectric effect dri...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره None

صفحات  31- 35

تاریخ انتشار 2016-04

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023